
12
DATA AFFINITY

Up to this point, our discussion has centered on data regionalization, data

synchronization, and data distribution. All are important and necessary data man-

agement features within the data grid. Combined, they provide the tools that

enable the data grid, in particular and grid computing in general, to expand

beyond simple computational problems to the broader category of the data-intensive

applications typically found in private industry and government agencies.

But there is another important feature of a data grid that must be addressed: data

affinity. This, in short, addresses the maximum usage of the most precious and costly

resource within the grid—the network. Minimizing the movement of data across a

network increases the efficiency and pliability of the grid on both processing and

cost bases. Data regionalization, data distribution, and data synchronization each

provides a necessary component that, when managed in synchronization, achieves

the broader objective of data affinity.

There are breakeven points, points where it simply becomes too expensive to

move data within a grid in comparison to the cost of performing the operation locally

without using a grid. Efficient data management within a grid, or data affinity, can

lower the breakeven point for a broader and more complex application set. The

more applications the grid can support, the broader the acceptance and the more rel-

evant the technology becomes—a spiraling cycle that feeds on itself, expanding the

technology beyond critical mass; in essence, a paradigm shift in computing.

133

Distributed Data Management for Grid Computing, by Michael Di Stefano
Copyright# 2005 John Wiley & Sons, Inc.



A MEASURABLE QUANTITY

The cost-basis components of grid computing are processing power/capacity (e.g.,

CPU), disk storage, and network bandwidth. The first two are orders of magnitude

more economical than the latter, the network. Network bandwidth is by far the most

costly resource. It costs more to move data across a network than it does to store

them on disk. For example, it costs more to move data across a network than to

spend additional CPU cycles to regenerate the data over and over again.

A paper written by Jim Gray, on distributed computing economics,23 categorizes

some of these costs. Included in the costs of distributed computing are database

access and disk storage; our discussions will not take these parameters into consider-

ation. Long-term data storage is a constant, independent of the compute topology

used in grid computing or client/server computing. In the situation where the

data grid is file-based (e.g., GridFTP, distributed file system, or some other variant),

the local node storage is disk, which is inexpensive in comparison to other resources.

In the case where the data grid’s memory is used for data storage (e.g., RAM), this,

too, is fairly inexpensive. Therefore, the result is a drop in the ocean compared with

the overall cost of operating an efficient grid architecture. The two variables we will

examine are the costs of computation—that is, the associated cost of different grid

nodes (e.g., tens, or hundreds, or thousands of computational nodes)—and the cost/
efficiency ratio of the nodes in performing calculation-type tasks. The second

resource that will drive the cost analysis is network bandwidth, the cost of

moving data between the nodes of the grid to perform a task.

A useful metric is the ratio of computational cost versus the cost of data move-

ment on the network. This parameter defines the point where it becomes too costly to

perform an operation over a grid because of the required movement of data. A paper

written by Hewlett-Packard24 discusses the dynamics of distributed computing (see

equation below). An important part of this is minimizing the overall network traffic

by locating the tasks or services closest to each other. A quantitative analysis metric

is proposed in the paper is the “partial objective function (POF).” POF is a way to

measure the cost of moving data between nodes alongside the computational cost or

processing capacity of the nodes

fPOF ¼
b

bþ (aCT þ (1� a)uT)

where CT ¼ sum of traffic costs between the services on a pair of servers weighted

by the distance between these servers, uT ¼ variance of the processing capacity

usage among the servers, a ¼ balancing factor between 0 and 1, and b ¼ chosen

according to the maximum possible values of CT and uT in order to ensure a rela-

tively uniform distributions of the POF values.

Therefore, in order for a data grid to be effective, it must be able to provide

metered data, metrics (i.e., POF or something similar), and data management

134 DATA AFFINITY



policy controls (both manual and dynamic), and externalize data locality infor-

mation to

. Allow the scheduling of a task or service to take into account data locality so as

to move the execution of tasks to where the data reside in an effort to reduce

network traffic.

. Enable the data grid to migrate or redistribute data to nodes where the task is

most often performed, based on data movement patterns due to task execution.

What to Expect from Data Affinity

What improvement in performance can be expected by smartly routing task to data

locality or by routing data to most probable task locality? Ian Foster conducted a

study on just this topic,25 where the task performance was measured both with

and without an efficient data grid that takes into account data locality with task sche-

duling. The results with every aspect indicate that the performance of the grid

increased. Metrics included the average response time per job, the average data

transferred per job, the average idle time of processors, and the average response

time. In each case, when data locality was factored in, the performance for each

metric improved anywhere from one to two orders of magnitude.

HOW TO ACHIEVE DATA AFFINITY

In general there are two ways to achieve data affinity. The first uses the compute

grid, where information is provided to it by the data grid so that tasks are routed

to the data. The second uses the data grid, by observing data movement patterns,

migrating (caching) data to those nodes where the tasks seem to be the most fre-

quently computed. Individually, each technique will increase the data affinity

levels. Optimally, combining the compute grid’s routing task to data and the data

grid’s data migration techniques will yield higher data affinity levels, thus minimiz-

ing network traffic and increasing the performance of the grid.

Regionalization, Synchronization, Distribution, and Data Affinity

The objective of data affinity is to have the data and task collocated as closely as poss-

ible to eliminate network traffic and to increase performance by reducing latency. This

can be achieved in two ways. The first method is proactive, whereby tasks are routed

to the data by giving the compute grid’s task scheduler the required information on

data locality so that it can make smarter task routing decisions with regard to data

location on the physical nodes of the compute grid. Keep in mind that this method

may not always be 100% successful. This does not always mean that the node selected

to perform the task is the best choice, since it may not have the data needed for the

task already cached, thus forcing the data grid to move the data to that node.

HOW TO ACHIEVE DATA AFFINITY 135



The data grid manages the second method of data affinity. The following analogy

highlights the role of the data grid as both predictive and reactive in nature and con-

trasts it to the task scheduling function of the compute grid. As the compute grid’s task

routing function is to the offensive unit of a football team, the data grid’s data

migration efforts are to the defensive unit of the opposing team. The defense, given

all it knows about current situation of the game and history of the opposing team’s

offensive capability, will predict what the next play will be, and set up the appropriate

defensive strategy. However, even before the ball is put into play, the defense has to

react to the play as it unfolds. The same philosophy holds true for the data migration

efforts of the data grid. The data grid is predictive; thus it anticipates the compute

grid’s task routing patterns and migrates data to the physical nodes ahead of it. The

data grid is also reactive by making real-time adjustments to data migration as the

“play unfolds.” As the tasks are routed to the physical nodes, the data grid must

react by routing the data to nodes where the data do not yet exist. The data grid

can accomplish its predictive data migration objectives through the combinations of

its data regionalization, data distribution, and data replication policies.

One interesting side note is the effect of the physical size of the data grid on the

data migration efforts of the data grid. In the case where the grids are of small phys-

ical size, the data grid becomes less effective in its role of achieving data affinity,

leaving the compute grid’s task routing via data locality as the primary method.

As the physical size of the grid increases, the effectiveness of data migration by

the data grid increases its contribution to data affinity.

The following functions describe data affinity with regards to physical size of the

grid. For grids of small physical size

DataAffinity ¼ ComputeGrid(Task-to-Data)

As the physical size of the grid increases, the data grid’s data migration efforts

play an ever-increasing roll towards data affinity:

DataAffinity ¼ ComputeGrid(Task-to-Data)þ DataGrid(Data-Migration)

The data grid’s management policies work together to achieve data affinity. The

outermost container for data affinity is the data region, which is a logical partition of

data within the data grid. The data region has a physical boundary within the grid, as

discussed earlier. This boundary consists of the specific nodes that are allocated to a

data region and contribute their physical resources to that data region. It is possible

for any one physical node to be an active part of multiple data regions. If the com-

pute grid is to route tasks to where the data are resident, it must be one of the nodes

that physically support the data region and that contains the data necessary for the

task to perform its operation. Within a data region’s physical boundary, the individ-

ual data atoms are replicated. The data replication policy determines the exact repli-

cation pattern or the number of required copies. Each data atom, including all

replicas, is distributed throughout the data region, based on the data distribution

policy of the data region. The data synchronization policy determines how all the

data atoms and all the replicas coordinate with each other within the data region.

136 DATA AFFINITY



Synchronization can be tightly bound, where a change in state of one data atom is

transitionally reflected in all replicas, or loosely bound, where a change in state of

one data atom is reflected in the replicas, but in a nontransactional manner. The

data synchronization policy has increasing importance as the data region starts to

span the following:

. Areas of varying network bandwidth; should the data region span across a

wide-area network (WAN), then the coordination of the replicated data

atoms distributed across the data region becomes necessary for data accuracy

and performance of the system. These two aspects must be weighed against

each other when setting the policies of synchronization and distribution

within the data region.

. Nodes of the compute grid support applications or services of different, nonco-

existent hardware and/or software configurations (applications that require

different operating systems, libraries, or other software configurations that

cannot be shared on a single machine). This forces the creation of subregions

within a single data region of the data grid. Within each subregion, data affinity

must be maintained. This is done through data synchronization between the sub-

regions, and within each subregion separate data replication and distribution pol-

icies are also required. An alternative approach is to have separate data regions,

each spanning a configuration set and leveraging interregion synchronization to

keep the group of data regions cohesive and in a well-known steady state.

Through the combination of data regionalization, data replication policy, data

distribution policy, and data synchronization policy, the data grid performs both

proactive and reactive data migration methods to contribute to data affinity within

the data grid.

Other considerations include macro events. From the macro level, the size and

shape of a data region can contribute to a slow-moving data grid, and the distribution

of data within the region can be equally slow to change. Macro events cause changes

in the data region’s size, shape, and data distribution. The macro events are usually

peak and off-peak service loads that occur at various intervals, including daily,

weekly, monthly, and yearly. However, there are external forces to the grid that

affect data regions at the micro level that cause smaller changes to the region.

Such events are hardware failures, the addition of new hardware to the grid/data
region, and variations in service demand. Macro changes are predictable and can

be planned for, while micro changes are not predictable and are harder to plan

for. Thus, continual adjustments to data regionalization, distribution, replication,

and synchronization policies must be made to maintain peak data affinity levels

within the data region.

Data Distribution is Key to Data Affinity

Earlier, we discussed what the data grid could do to assist in achieving data

affinity. Among the data management policies of synchronization, replication,

HOW TO ACHIEVE DATA AFFINITY 137



and distribution, the latter has the most impact. The data distribution policy deter-

mines on which nodes the data atoms will physically reside. Should the data grid

via its data distribution policy estimate correctly the nodes of the grid where tasks

are most often performed, the movement of data across the data grid will be mini-

mized. This area of data management in the data grid is one that will receive a great

deal of attention by computer scientists, mathematicians, and engineers alike going

forward. Similarities can be drawn to the exotic derivatives sectors of the financial

markets. Mathematical models are under constant flux to predict market conditions

and volatility in the markets, and ultimately determine instrument pricing and risk

exposure. In each area, certain assumptions are made. For example, to price an

option, one has the choice of using the Black–Scholes, binomial (Cox–Ross),

Adesi–Whaley, or a host of other models. The Black–Scholes model assumes

that the price of the underlying instrument follows a lognormal distribution. The

binomial model is based on the probability that the price of the underlying

instrument has an equal probability of going up or down. The Adesi–Whaley

model establishes a differential equation between the estimated and actual prices

of the modeled instrument. Today, the area receiving the most attention is the

prediction of market volatility, a key input parameter to all the pricing models

mentioned.

Prediction of how to best distribute data in a data grid has the same characteristics

as pricing an investment in the derivatives market. Assumptions will be made on

many of the variable parameters of data distribution, and quantitative models will

be derived on the basis of these assumptions. For example, one can assume complete

randomness. Any task has an equal probability of being executed on any given node

of the grid at any given time; therefore the data can be randomly distributed across

the data grid. Or one may make the assumption that tasks will center around the

physical “hot spots” in the grid but will dissipate or radiate outward like a bell

curve, and therefore a data distribution bell curve with two, three, or four standard

deviations will be required. An engineer—your author is one—will establish a feed-

back loop and dynamically adjust the physical location of each data atom, based on

past data movement patterns that have been collected and analyzed. As you can see,

the possibilities are bound only by our minds.

In Part IV of this book, we propose a hypothesis that data distribution patterns

occur at two levels: namely, data atom distribution within a “data body,” and a

second distribution pattern of the “data bodies” themselves. A data body is a group-

ing of a single data type, such as market pricing data or a customer portfolio. Look-

ing at the larger system of a business service or application, data bodies will exhibit

natural forces of attraction toward each other within the space of the data grid. The

data grid will in turn exert a resistive force on the two data bodies. When the resis-

tive force equals the attractive force of the data bodies, an equilibrium distance is

established. The point of equilibrium distance represents the point of minimal

data movement within the data system (all the data bodies of the business service

or application) of the data grid. This suggests a system model where data distribution

describes data bodies in a fashion similar to those found for the most fundamental

laws of nature and physics.

138 DATA AFFINITY



Regardless of the assumptions one makes and the resulting data distribution

model, the objectives are the same. How best to predict data usage patterns

within a data grid in order to minimize the data movement during the normal oper-

ation of a system within a grid? The better the prediction model, the faster an “equi-

librium” or “steady state” can be reached for data distribution, thus resulting in the

most efficient use of the precious resource of the grid, the network.

Data Affinity and Task Routing

The compute grid’s task scheduling function for data is one tool for achieving data

affinity. This is done by making the compute grid aware of the data locality so that it

can be used as part of its formula for routing a task to a grid node. Armed with the

knowledge of what data are required for what task and physically where in the grid

those data are localized, the task scheduler can make a smarter decision on where to

send the task for execution. The first choice is to eliminate network traffic by routing

the task to where the data are already cached. If this is not possible, then a node

with the network proximity closest to those where the data reside is selected,

which again will minimize network traffic. The number of “hops” that the data

must take from the node A where the data reside, to node B where the task is

routed, will affect network traffic.

What is the task scheduler of a compute grid? The task scheduler is the logical

unit of work in the overall work flow of the compute grid that maintains an active

inventory of

. Task—work to be done by the compute grid

. Dependencies required to complete the task; some examples are

Operating system

Compiled libraries

Task/service type dependencies (e.g., Web server, queuing systems)

. Resources capable of executing the task

. Determining which capable resources are available at the point in time when

the task is to be executed

According to this inventory, the scheduler matches the best available resource to

execute each task and distributes the task to the compute node.

INTEGRATION OF COMPUTE AND DATA GRIDS

The data grid can monitor usage and data movement patterns within regions and

adjust the data distribution policy in such a way as to minimize the movement of

data within the region. For example, if the compute grid routinely routes tasks to

a node where the data are not local, the data grid needs to move the required data

to that node. If the data grid notices this pattern occurring often enough, the data

INTEGRATION OF COMPUTE AND DATA GRIDS 139



distribution policy should be adjusted so that the data reside locally on the node in

question in order to limit movement of data. Thus, readjustment of the data distri-

bution policy will increase performance by estimating future data locality needs.

However, this becomes more of a reactive approach to solving the problem of

data affinity. One way of being proactive is to give the compute grid’s scheduling

algorithms the additional information about data locality. Armed with this additional

information, should the scheduling algorithm have a choice between two nodes to

route a task—one node where the data are local and a second node where the data

are not local—the smarter decision would be to route the data to the node where

data are local. In this way, the compute grid, through its task scheduler with the

knowledge of data locality, can increase the level of data affinity by scheduling

tasks to data locality.

Recalling the diagrams of a compute grid environment consisting of parallel

compute and data grid planes, interaction between the planes is nonexistent and

they can run and operate independently of each other (see Figure 12.1).

However, we have just made a case for improved performance and broader appli-

cation sets that a grid environment can support through data affinity. This will force

sharing of information or an interaction between the data grid and the compute grid

(see Figure 12.2). The type of information that needs to be shared is data locality

from the data grid to the compute grid, which identifies the physical nodes where

the data atoms are located.

Even though data affinity is not necessary for operating a grid environment, the

overall benefits outweigh the extra effort required to establish a link between the

compute and data grids. Currently, there is no standard interface between the com-

pute and data grids, so in the absence of a standard, some of the minimum require-

ments of such an interface—all of which will require the cooperation of both the data

grid and compute grid providers—are listed below:

. The compute grid will require an open interface to the task scheduler to which

the data grid can publish.

Compute grid plane

Data grid plane

Figure 12.1. Parallel grid planes.

140 DATA AFFINITY



. The data grid must provide a pull-based public interface, or a query capability

so that the compute grid’s task scheduler can query the location of data types, as

well as and specific data atoms.

. (Note: This is an advanced method at the programmatic level.) At the appli-

cation/task level integration (a programmatic API used to grid-enable an appli-

cation), the data grid API can feed the specific data information required by the

task via the compute grid public API, where the information is supplied into the

compute grid, thus prepopulating the data locality requirements to the task

scheduler.

EXAMPLES

Earlier, we discussed the separation of data management from the underlying engine

of the data management system. Some implementations of the data grids can be

metadata-dictionary-based, distributed-file-based, or distributed-cache-based. Each

type of data grid is supported by its own unique engine. The separation of data man-

agement from the engine allows for the data management principles of regionaliza-

tion, synchronization, distribution, and data affinity. The following are some

examples of data grids that support data affinity:

. OceanStore: a project run at Berkeley, CA; distributes data (as files) across any

number of servers in such a way as to promote data locality, robustness, and

Compute grid plane

Data grid plane

Data node

Compute node

Interaction between the

two planes in data locality

from the data grid to the

task scheduler to the

compute grid

Figure 12.2. Interaction between compute and data grid planes.

EXAMPLES 141



fault tolerance. It analyzes usage patterns, network activity, and resource avail-

ability to proactively migrate data toward areas of use.

. A common query interface for individual data sources through the use of a

shared metadata dictionary.

. Integrasoft’s Grid Fabric, a data grid that establishes a federated cache space

that spans the entire grid. Supports the distributed data management principles

discussed in this book.

142 DATA AFFINITY


